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Abstract

E�ects of molybdenum replacement by tungsten in steels of the bainitic, martensitic, and martensitic±ferritic classes

containing 2.5%, 8% and 11% Cr, respectively, were investigated. The phase composition and structure of the bainitic

steels were varied by changing the cooling rates from the austenitization temperature (from values typical for nor-

malization up to V� 3.3 ´ 10ÿ2°C/s) and then tempering. The steels were irradiated to a ¯uence of 4� 1023 n=m2 (P0.5

MeV) at 270°C and to ¯uences of 1:3� 1023 and 1:2� 1024 n=m2 (P0.5 MeV) at 70°C. The 2.5Cr±1.4WV and 8Cr±

1.5WV steels have shown lower values of the shifts in ductile±brittle transition temperature (DBTT) under irradiation in

comparison with corresponding Cr±Mo steels. Radiation embrittlement at elevated irradiation temperature was lowest

in bainitic 2.5Cr±1.4WV steel and martensitic±ferritic 11Cr±1.5WV steel. The positive e�ect of molybdenum replace-

ment by tungsten at irradiation temperature �300°C is reversed at Tirr � 70�C. Ó 2000 Elsevier Science B.V. All rights

reserved.

1. Introduction

Investigations of radiation damage resistance of re-

duced-activation Cr±W±V steels for fusion reactor ap-

plications have generally been carried out on materials

irradiated in fast reactors to high doses (>10 dpa) at

irradiation temperature Tirr P 360�C [1±4]. However,

more recently researchers have studied radiation resis-

tance of these materials under conditions of neutron

irradiation at lower temperatures and doses [5,6].

It has been shown [5] that the replacement of

molybdenum by tungsten on an approximately atom-for-

atom basis improves the radiation resistance of the

two-phase 11Cr±1.5WV steel in comparison with 11Cr±

0.8MoV steel at a ¯uence of � 1:4� 1024 n=m2 �Tirr �

240±300�C). These results suggest that the re-

placement of molybdenum by tungsten may have a fa-

vorable in¯uence not only on the reduced-activation

characteristics, but also on the radiation resistance of

other heat-resistant chromium steels. This paper presents

the results of molybdenum replacement by tungsten on

the structure and mechanical properties of reduced-acti-

vation Cr±W±V-steels containing 2.5%, 8±9% and 11%

Cr under low dose irradiation conditions at di�erent

temperatures.

2. Experimental procedure

Reduced-activation Cr±W±V-steels containing

�2.5%, �8%, and 11% Cr and designated as 2.5Cr±

1.4WV, 8Cr±1.5WV, 11Cr±1.5WV were investigated.

The corresponding molybdenum-containing reference

materials have nominal compositions of 2.5Cr±0.7MoV,

8Cr±0.8MoV and 11Cr±0.8MoV. Molybdenum was re-

placed by tungsten approximately on an atom-for-atom
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basis in the reduced-activation versions. Yttrium was

added to the 8% and 11% Cr steels to modify and clear

grain boundaries. The chemical compositions of the

materials are given in Table 1. The steels containing

2.5% Cr are bainitic, and the 8% and 11% Cr steels are

martensitic and martensitic±ferritic (about 20% of delta-

ferrite), respectively.

The reduced-activation Cr±W±V and reference Cr±

Mo±V steels were melted in an open induction, 100 kg

furnace with the same charge, and were poured as 16 kg

ingots. The ingots were forged at temperatures between

900°C and 1050°C into rods 10±15 mm diameter and

sheet billets 40� 80� 150 mm3. Sheet billets were rolled

into plates (15� 20� 400 mm3). The rods and the plates

were heat treated as shown in Table 2. Small charpy

specimens (5� 5� 27:5 mm3) with a V-notch 0.5 mm

wide and 0.5 mm deep were cut out of the plates along

the rolling direction (L±T orientation). Cylindrical ten-

sile specimens with a 3 mm diameter and 15 mm long

gauge section were cut from the rods. The structure of

the steels was investigated by both optical and trans-

mission electron microscopy methods.

Specimens of the bainitic steels were irradiated in the

core of a VVER-440 power reactor at the coolant tem-

perature (270� 10�C) to a ¯uence of � 4� 1023 n=m2

(P 0.5 MeV). Irradiation of the high chromium steels

was carried out in the core of the WWR-M experimental

reactor at a temperature of 70°C (cooling water) to

¯uences of 1:3� 1023 and 1:4� 1024 n=m2 (P 0.5 MeV).

The reference 8Cr±0:8MoV steel was irradiated in the

core of the WWR-M reactor at � 300�C (in helium)

together with the steels reported earlier [5].

Impact tests of the unirradiated and irradiated

specimens were carried out on a remote pendulum-type

impact machine with a maximum energy of 50 J.

The experimental data were ®t to a hyperbolic tan-

gent function to permit the ductile±brittle-transition

temperature (DBTT) and the upper shelf energy (USE)

to be evaluated. In this case the DBTT was de®ned at

the absorbed energy halfway between the upper and

lower shelves and it is indicated below as T0:5. A DBTT

(T6J) was also evaluated at 6 J of impact energy [7].

The tensile tests were carried out on a remote testing

machine in air at room temperature at a strain rate of

3� 10ÿ3 sÿ1.

3. Results and discussion

3.1. Bainitic steels

The 2.5Cr±1.4WV and 2.5Cr±0.7MoV steels were

investigated in four structural conditions obtained by

the following heat treatments:

1. austenitized 1 h at 1000°C, air cooled (normalized);

2. normalized with the subsequent tempering 10 h at

680°C;

3. austenitized 1 h at 1000°C, cooling at 3.3 ´ 10ÿ2°C/s;

4. #3 with subsequent tempering for 10 h at 680°C.

The structure of both steels after normalization is

practically identical and characterized by a non-uniform

distribution of ferrite (up to 10%) and granular bainite.

The granular bainite consists of a ferrite matrix with a

high dislocation density (q � 1015 mÿ2) and martensite-

austenite islands located both at grain boundary triple

points and on subgrain boundaries.

The mechanical properties of these steels after nor-

malization are also similar: yield stress �925 MPa, T0:5

)21°C, USE� 14 J (Table 2).

The structure of both steels cooled at a rate of

3.3 ´ 10ÿ2°C/s di�ers greatly from the structure of the

normalized steel. The ferrite quantity is �80% and

�70% for tungsten- and molybdenum-containing steels,

respectively. The ferrite grains are characterized by a low

dislocation density �q � 1013 mÿ2�, and they contain a

uniform distribution of carbides that are spherical with a

Table 1

Chemical composition of steels

Steel designation Concentration (wt%)a

C Si Cr Mn W V S P Cu Y Mo

Bainitic steels

2.5Cr±1.4WV 0.18 0.20 2.40 0.34 1.3 0.24 0.004 0.007 <0.10 ± <0.03

2.5Cr±0.7MoVb 0.18 0.23 2.38 0.48 ± 0.30 0.004 0.006 <0.10 ± 0.73

Martensitic steels

8Cr±1.5WV 0.15 0.19 8.2 0.35 1.4 0.26 0.006 0.018 <0.10 0.01 ±

8Cr±0.8MoVb 0.10 0.18 8.4 0.48 ± 0.26 0.007 0.015 <0.15 ± 0.85

Martensitic±ferritic steels

11Cr±1.5WV 0.13 0.29 10.6 0.37 1.35 0.26 0.007 0.018 <0.10 0.01 ±

11Cr±0.8MoVb 0.09 0.28 10.9 0.47 ± 0.25 0.007 0.015 <0.10 0.01 0.81

a Balance iron.
b Reference steels.
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diameter �100 nm. In addition, a pearlitic structure with

regularly located layers of cementite was observed. The

respective mechanical properties of the 2.5Cr±1.4WV

and 2.5Cr±0.7MoV steels were: yield stress �300 and

350 MPa, T0:5 )45°C and )36°C, and USE )20 and 18 J.

Tempering the normalized steels resulted in polyg-

onization of their dislocation structure and dissociation

of the martensite and residual austenite into ferrite and

large �d � 400 nm� cementite carbides located on

boundaries of the subgrains. The respective properties of

the tungsten- and molybdenum-containing steels were:

yield stress 685, 670 MPa; T0:5 )78°C, )79°C; and USE

26, 24 J.

Tempering the steels after slow cooling resulted in

some enlargement of the cementite layers. In this case,

the yield stress of the 2.5Cr±1.4WV steel increased to

�325 MPa and the yield stress of the 2.5Cr±0.7MoV

steel decreased to 330 MPa. The T0:5 of steels decreased

to )64°C and )53°C and the USE rose up to 23 and 25

J, respectively (Table 2).

Thus, replacement of molybdenum by tungsten did

not a�ect the structure and mechanical properties of the

bainitic steels in the normalized and normalized-and-

tempered conditions. Even for the slowly cooled steels,

which di�ered from normalized steels in structure and

properties, replacement of molybdenum by tungsten did

not change the properties.

Table 2 shows the e�ects of irradiation at a ¯uence of

4� 1023 n=m2 at 270°C upon mechanical properties of

the bainitic steels. Radiation hardening for the various

heat treatments of the 2.5Cr±1.4WV steel is within the

range 35±70 MPa and for 2.5Cr±0.7MoV steel is within

the range 15±65 MPa. The uniform and total relative

elongation was not much a�ected by irradiation. These

elongations decreased less than 2.5%. The replacement

of molybdenum by tungsten in both steels a�ected

mostly the shift in DBTT. For the 2.5Cr±1.4WV steel in

the normalized-and-tempered condition the shift in T0:5

was 12°C, while for molybdenum-contained steel it was

30°C. Similarly, the tungsten-containing steel has the

lower DBTT after both slow cooling without tempering

(regime 3) and with subsequent tempering (regime 4)

compared with the molybdenum-containing steel.

In Table 2, it is also seen that the upper shelf energy

does not decrease after irradiation but increases slightly.

For normalized-and-tempered tungsten- and molybde-

num-containing steels, this increase was 1±4 J; for the

slowly cooled steels without tempering, 8±10 J; and for

slowly cooled steels with tempering, 2±5 J. These shifts

are consistent with the degree of hardening and the small

decrease in elongation. Because of the increase of the

USE after irradiation, the value of T0:5 had an additional

component of increase. Accordingly, the T6J shifts were

appreciably lower for the reduced-activation steel com-

pared to the reference steels in the normalized-and-

tempered condition. Thus, the 2.5Cr±1.4WV reduced-

activation steel showed better radiation resistance than

that of 2.5Cr±0.7MoV steel in all of the conditions.

3.2. Martensitic and martensitic±ferritic steels

The positive in¯uence of replacing molybdenum by

tungsten on radiation resistance also occurs for the

martensitic steels containing 8% Cr. After irradiation to

a ¯uence of 1:3� 1024 n=m2 (Tirr� 300°C), the 8Cr±

1.5WV and 8Cr±0.8MoV steels in the normalized-and-

tempered condition had shifts in T0:5 of 35°C and 82°C,

and shifts in T6J )28°C and 87°C, respectively. In both

cases, the increase in yield stress was 240±250 MPa.

However, the 11Cr±1.5WV tungsten-containing steel

loses its advantage in radiation resistance as compared

with 11Cr±0.8MoV molybdenum-contained steel at low

irradiation temperature. After irradiation to ¯uence of

1:2� 1024 n=m2 at 70°C, the shifts in T0:5 of these steels

were 145°C and 97°C, and the shifts in T6J were 126°C

and 103°C. This e�ect was theoretically predicted in the

previous work [8].

The data obtained in this study indicate a strong

in¯uence of neutron irradiation at low temperature

(70°C).

Comparison with previous data [5] shows decreasing

radiation e�ects for martensitic and martensitic±ferritic

steels with increasing irradiation temperature. Increas-

ing the irradiation temperature from 70°C to 300°C (a

¯uence is (1.2±1.3) ´ 1024 n/m2) result in decreases of

DT0:5 from 110°C to 35°C for the martensitic 8Cr±

1.5WV steel (Table 2). The decrease in shift with in-

creasing irradiation temperature from 70°C to 240°C is

also signi®cant for the martensitic±ferritic 11Cr±1.5WV

steel (Table 2).

One may try to estimate quantitatively the sensitivity

to neutron irradiation of the bainitic steels for which the

changes in DBTT within the range of neutrons ¯uence

1023±1024 n/m2 are described by the following equation

[9]:

DT0:5 � �AF�F 1=3; �1�

where AF is a coe�cient of radiation embrittlement and

F is the neutron ¯uence in units of 1022 n/m2. For mo-

lybdenum-containing steels of the 2.5Cr±0.7MoV grade

at an irradiation temperature 270°C, the coe�cient AF is

in the range of values 8±12 [9]. For the reference steel of

2.5Cr±0.7MoV grade studied here, AF for di�erent heat

treatment conditions is in the range of values 9±11.5,

which correspond well with previous data [9], and can be

considered as a reference value for comparison. For the

tungsten-containing steel, AF for di�erent heat treatment

conditions is within the range 3.5±8. This is again indi-

cative that the reduced-activation tungsten-containing

steels are less sensitive to radiation embrittlement than

the reference steels.
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Likewise the AF values at irradiation temperatures in

the range 240±300°C for 8Cr±1.5WV and 8Cr±0.8MoV

steels are 7 and 16.5, and for the 11Cr±1.5WV and

11Cr±0.8MoV steels are 3 and 12, respectively.

At low temperature, the sensitivity of the steels to

irradiation is much higher: AF values of 8Cr±1.5WV and

11Cr±1.5WV tungsten-containing steels are within the

range 23±35, while AF value of 11Cr±0.8MoV molyb-

denum-containing steel is equal to 20.

Thus, among tungsten-containing steels, the 2.5Cr±

1.4WV and 11Cr±1.5WV steels have shown the least

sensitivity to radiation embrittlement at Tirr� 240±

300°C; the AF coe�cient for these steels was 3.5 and 3,

respectively.

4. Conclusions

1. Replacing molybdenum by tungsten in 2.5Cr±1.4WV

and 2.5Cr±0.7MoV bainitic steels improve radiation

resistance at Tirr � 270�C. At a ¯uence of

�4� 1023 n=m2, the shift in DBTT (T0:5) for these

steels in the normalized-and-tempered condition

was 12°C and 30°C, respectively. In the unirradiated

condition, these steels have a similar level of mechan-

ical properties for a range of heat treatment varia-

tions.

2. Replacing molybdenum by tungsten in 8Cr±1.5WV

and 8Cr±0.8MoV martensitic steels also improves

them. After irradiation to a ¯uence of �1:3�
1024 n=m2 (Tirr� 300°C), the shifts in DBTT (T0:5)

of these steels were 35°C and 82°C, respectively.

3. For 11% Cr martensitic±ferritic steels (11Cr±1.5WV

and 11Cr±0.8MoV), the replacing molybdenum by

tungsten result in lower shifts at higher irradiation

temperature. At Tirr� 240±300°C (a ¯uence of

�1:3� 1024 n=m2) the shifts in DBTT (T0:5) in these

steels were 15°C and 60°C, while after irradiation

at 70°C these shifts were 145°C and 97°C, respec-

tively.
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